Weak type estimates for functions of Marcinkiewicz type with fractional integrals of mixed homogeneity
نویسندگان
چکیده
منابع مشابه
Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
*Correspondence: [email protected] 1School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China Full list of author information is available at the end of the article Abstract In this note we establish the Lp boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces, which improve and extend some previous results. The main ingredient is to presen...
متن کاملFractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces
*Correspondence: [email protected] College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the a...
متن کاملBoundedness of higher-order Marcinkiewicz-Type integrals
Let A be a function with derivatives of order m and DγA∈ Λ̇β (0 < β < 1, |γ| =m). The authors in the paper proved that ifΩ∈ Ls(Sn−1) (s≥ n/(n−β)) is homogeneous of degree zero and satisfies a vanishing condition, then both the higher-order Marcinkiewicz-type integral μΩ and its variation μ̃ A Ω are bounded from L p(Rn) to Lq(Rn) and from L1(Rn) to Ln/(n−β),∞(Rn), where 1 < p < n/β and 1/q = 1/p− ...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 2019
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-114725